KHDRBS1,也称为Sam68(Src-associated substrate during mitosis of 68kDa),是一种RNA结合蛋白,在细胞中发挥着多种生物学功能。KHDRBS1包含一个KH结构域,该结构域能够与RNA结合,参与RNA的剪接、转运和稳定性调控。此外,KHDRBS1还与信号转导途径相关,能够调节多种细胞过程,如细胞增殖、迁移、凋亡和DNA损伤修复。
在卵巢功能不全(POI)的遗传学研究中,KHDRBS1被认为是一个重要的候选基因。POI是一种导致女性在40岁之前出现卵巢功能衰竭的疾病,表现为不孕。研究表明,KHDRBS1的序列变异可能导致mRNA剪接异常,进而影响DNA复制和修复相关基因的表达,从而导致POI的发生[5]。此外,KHDRBS1还与卵巢发育和卵泡形成相关,其表达水平异常可能影响卵巢功能[1]。
在胃癌研究中,KHDRBS1被发现与药物耐药性和肿瘤自我更新有关。研究发现,ADAR1介导的RNA编辑可以增加SCD1 mRNA的稳定性,进而促进脂滴形成和β-catenin表达,增强肿瘤细胞的自我更新能力。KHDRBS1通过与SCD1 mRNA的3'UTR区域结合,参与了这一过程[2]。
KHDRBS1在肝细胞癌(HCC)中也发挥着重要作用。研究表明,KHDRBS1在HCC中高表达,其阳性表达与肿瘤进展相关。KHDRBS1可以通过影响HCC细胞的增殖、迁移、免疫微环境和药物敏感性,促进肿瘤的发生和发展[3]。
KHDRBS1在肉瘤中也具有潜在的治疗意义。一项研究表明,一例未分类的间质肉瘤患者携带NTRK1-KHDRBS1基因融合,并接受crizotinib治疗,取得了长期的无肿瘤生存[4]。这表明,NTRK基因融合可能成为肉瘤治疗的新靶点。
此外,KHDRBS1还与结肠肿瘤的发生和发展相关。研究发现,KHDRBS1可以通过调节NF-κB信号通路,影响结肠上皮细胞对DNA损伤的敏感性,从而参与结肠肿瘤的发生[6,8]。KHDRBS1还可以通过调节戊糖磷酸途径,影响胶质母细胞瘤(GBM)细胞的恶性生物学行为[7]。
综上所述,KHDRBS1是一种重要的RNA结合蛋白,在多种疾病中发挥着重要作用。KHDRBS1的异常表达和功能可能与卵巢功能不全、胃癌、肝细胞癌、肉瘤和结肠肿瘤的发生和发展相关。进一步研究KHDRBS1的生物学功能和分子机制,有助于深入理解相关疾病的发病机制,并为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. França, Monica Malheiros, Mendonca, Berenice Bilharinho. 2021. Genetics of ovarian insufficiency and defects of folliculogenesis. In Best practice & research. Clinical endocrinology & metabolism, 36, 101594. doi:10.1016/j.beem.2021.101594. https://pubmed.ncbi.nlm.nih.gov/34794894/
2. Wong, Tin-Lok, Loh, Jia-Jian, Lu, Shixun, Leung, Suet Yi, Ma, Stephanie. 2023. ADAR1-mediated RNA editing of SCD1 drives drug resistance and self-renewal in gastric cancer. In Nature communications, 14, 2861. doi:10.1038/s41467-023-38581-8. https://pubmed.ncbi.nlm.nih.gov/37208334/
3. Fan, Rui, Liu, Fahui, Gong, Qiming, Tang, Shihang, Shen, Dongyan. 2024. KHDRBS1 as a novel prognostic signaling biomarker influencing hepatocellular carcinoma cell proliferation, migration, immune microenvironment, and drug sensitivity. In Frontiers in immunology, 15, 1393801. doi:10.3389/fimmu.2024.1393801. https://pubmed.ncbi.nlm.nih.gov/38660302/
4. Chen, Weijie, Wang, Huimei, Jiang, Dongxian, Zhou, Yuhong, Hou, Yingyong. 2021. Unclassified mesenchymal sarcoma with NTRK1-KHDRBS1 gene fusion: a case report of long-term tumor-free survival with crizotinib treatment. In World journal of surgical oncology, 19, 136. doi:10.1186/s12957-021-02237-y. https://pubmed.ncbi.nlm.nih.gov/33941195/
5. Wang, Binbin, Li, Lin, Zhu, Ying, Kee, Kehkooi, Cao, Yunxia. . Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing. In Human reproduction (Oxford, England), 32, 2138-2146. doi:10.1093/humrep/dex263. https://pubmed.ncbi.nlm.nih.gov/28938739/
6. Cervi, Catherine, Sápi, Zoltán, Bedics, Gábor, Bödör, Csaba, Csóka, Monika. 2023. Case report: Complete and durable response to larotrectinib (TRK inhibitor) in an infant diagnosed with angiosarcoma harbouring a KHDRBS1-NTRK3 fusion gene. In Frontiers in oncology, 13, 999810. doi:10.3389/fonc.2023.999810. https://pubmed.ncbi.nlm.nih.gov/36910630/
7. Liu, Xiaoyu, Liu, Xiaobai, Dong, Weiwei, Ruan, Xuelei, Xue, Yixue. 2024. KHDRBS1 regulates the pentose phosphate pathway and malignancy of GBM through SNORD51-mediated polyadenylation of ZBED6 pre-mRNA. In Cell death & disease, 15, 802. doi:10.1038/s41419-024-07163-x. https://pubmed.ncbi.nlm.nih.gov/39516455/
8. Fu, Kai, Sun, Xin, Wier, Eric M, Sears, Cynthia L, Wan, Fengyi. 2016. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. In eLife, 5, . doi:10.7554/eLife.15018. https://pubmed.ncbi.nlm.nih.gov/27458801/