GPR4,也称为G蛋白偶联受体4,属于一个由三个密切相关的G蛋白偶联受体组成的蛋白家族。GPR4作为一种酸敏G蛋白偶联受体,在多种生物学过程中发挥着重要作用,包括血管生成、质子感知和调节肿瘤细胞作为致癌基因。研究表明,GPR4在人类血管内皮细胞HMEC-1中高度表达,并且通过小干扰RNA敲低GPR4的表达可以导致447个差异表达基因的鉴定,这些基因可能与细胞凋亡、细胞骨架和信号传导、细胞增殖、分化和细胞周期调节、基因转录和翻译以及细胞物质和能量代谢相关[3]。此外,GPR4的表达与肠道炎症、纤维化和肿瘤发生等疾病过程密切相关。例如,在克罗恩病(CD)患者的纤维化病变中,GPR4的表达增加,并且GPR4的缺陷或药理抑制可以减少血管生成和纤维化[4]。在溃疡性结肠炎(UC)中,GPR4的表达也增加,并且GPR4的缺陷可以减轻肠道炎症[5]。此外,GPR4还与先兆子痫(PE)的发生有关,缺氧和酸碱环境可以增加GPR4的表达,并且GPR4的抑制可以促进滋养层细胞增殖和迁移[6]。在帕金森病中,GPR4的抑制可以改善神经毒物诱导的线粒体凋亡途径,保护多巴胺能神经元[7]。此外,GPR4还与肠道pH感知机制有关,GPR4的抑制可以改善结肠炎的炎症反应[8]。综上所述,GPR4是一种重要的酸敏G蛋白偶联受体,在多种生物学过程中发挥着重要作用,包括血管生成、质子感知和调节肿瘤细胞作为致癌基因。GPR4的表达与肠道炎症、纤维化和肿瘤发生等疾病过程密切相关,因此,GPR4的研究有助于深入理解酸敏G蛋白偶联受体的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略[1,2,3,4,5,6,7,8]。
参考文献:
1. Nabavi-Rad, Ali, Sadeghi, Amir, Asadzadeh Aghdaei, Hamid, Smith, Sinéad Marian, Zali, Mohammad Reza. . The double-edged sword of probiotic supplementation on gut microbiota structure in Helicobacter pylori management. In Gut microbes, 14, 2108655. doi:10.1080/19490976.2022.2108655. https://pubmed.ncbi.nlm.nih.gov/35951774/
2. Wang, Yao, Zhuang, Hao, Jiang, Xiao-Han, Wang, Hai-Yang, Fan, Zhi-Ning. 2023. Unveiling the key genes, environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: a comprehensive analysis. In Frontiers in immunology, 14, 1162458. doi:10.3389/fimmu.2023.1162458. https://pubmed.ncbi.nlm.nih.gov/37539055/
3. Ren, Juan, Zhang, Yuelang, Cai, Hui, Ding, Muyang, Jiang, Shiwen. 2014. RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis. In International journal of clinical and experimental medicine, 7, 607-15. doi:. https://pubmed.ncbi.nlm.nih.gov/24753754/
4. Weder, Bruce, Schefer, Fabian, van Haaften, Wouter Tobias, Rogler, Gerhard, Hausmann, Martin. . New Therapeutic Approach for Intestinal Fibrosis Through Inhibition of pH-Sensing Receptor GPR4. In Inflammatory bowel diseases, 28, 109-125. doi:10.1093/ibd/izab140. https://pubmed.ncbi.nlm.nih.gov/34320209/
5. Sanderlin, Edward J, Leffler, Nancy R, Lertpiriyapong, Kvin, O'Rourke, Dorcas, Yang, Li V. 2016. GPR4 deficiency alleviates intestinal inflammation in a mouse model of acute experimental colitis. In Biochimica et biophysica acta. Molecular basis of disease, 1863, 569-584. doi:10.1016/j.bbadis.2016.12.005. https://pubmed.ncbi.nlm.nih.gov/27940273/
6. Qi, Haining, Yao, Cuiyun, Xing, Jianhong, Qin, Ying. 2020. Hypoxia-induced GPR4 suppresses trophoblast cell migration and proliferation through the MAPK signaling pathway. In Reproductive toxicology (Elmsford, N.Y.), 99, 1-8. doi:10.1016/j.reprotox.2020.11.001. https://pubmed.ncbi.nlm.nih.gov/33161135/
7. Haque, Md Ezazul, Akther, Mahbuba, Azam, Shofiul, Choi, Dong-Kug, Kim, In-Su. 2020. GPR4 Knockout Improves the Neurotoxin-Induced, Caspase-Dependent Mitochondrial Apoptosis of the Dopaminergic Neuronal Cell. In International journal of molecular sciences, 21, . doi:10.3390/ijms21207517. https://pubmed.ncbi.nlm.nih.gov/33053856/
8. Hausmann, Martin, Seuwen, Klaus, de Vallière, Cheryl, Ruiz, Pedro A, Rogler, Gerhard. 2024. Role of pH-sensing receptors in colitis. In Pflugers Archiv : European journal of physiology, 476, 611-622. doi:10.1007/s00424-024-02943-y. https://pubmed.ncbi.nlm.nih.gov/38514581/