推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Nid2em1flox/Cya 条件性基因敲除小鼠
复苏/繁育服务
产品名称:
Nid2-flox
产品编号:
S-CKO-03960
品系背景:
C57BL/6JCya
每周秒杀
* 使用本品系发表的文献需注明:Nid2-flox mice (Strain S-CKO-03960) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Nid2em1flox/Cya
品系编号
CKOCMP-18074-Nid2-B6J-VA
产品编号
S-CKO-03960
基因名
Nid2
品系背景
C57BL/6JCya
基因别称
Ly111;NID-2;nidogen-2;entactin-2
NCBI号
修饰方式
条件性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:1298229 Mice homozygous for a null alleleexhibit calcification of joint cartilage and osteoarthritis.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Nid2位于小鼠的14号染色体,采用基因编辑技术,通过高通量电转受精卵方式,获得Nid2基因条件性敲除小鼠,性成熟后取精子冻存。
Nid2-flox小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的条件性敲除小鼠。Nid2基因位于小鼠14号染色体上,由21个外显子组成,其中ATG起始密码子在1号外显子,TGA终止密码子在21号外显子。条件性敲除区域(cKO区域)位于3号外显子,包含233个碱基对的编码序列。删除该区域会导致小鼠Nid2基因功能的丧失。 Nid2-flox小鼠模型的构建过程包括使用BAC克隆RP23-194C22作为模板,通过PCR技术生成同源臂和cKO区域。随后,将这些片段与靶向载体结合,并共同注入受精卵。出生的小鼠将进行PCR和测序分析进行基因型鉴定。 携带敲除等位基因的小鼠表现出关节软骨钙化和骨关节炎的特征。3号外显子占据了编码区的5.54%。插入5'-loxP位点的第二内含子大小为11116bp,插入3'-loxP位点的第三内含子大小为4311bp。有效的cKO区域大小约为1.4kb。 该模型可用于研究Nid2基因在小鼠体内的功能。由于生物过程的复杂性,目前的技术水平无法预测loxP插入对基因转录、RNA剪接和蛋白质翻译的风险。
基因研究概述
NID2,也称为Nidogen-2,是一种关键的基底膜成分,它通过稳定细胞外基质(ECM)网络发挥重要作用。NID2的表达和功能与多种癌症的发生和发展密切相关。例如,在鼻咽癌(NPC)和食管鳞状细胞癌(ESCC)中,NID2的启动子甲基化程度显著高于非癌对照组,NID2的表达下调,并且重新表达NID2能够抑制细胞克隆形成、迁移能力以及肝脏转移。这些研究结果表明,NID2在肿瘤转移抑制中发挥着重要作用[1]。在肺癌中,NID2的DNA高甲基化状态导致其表达水平降低,从而促进了肺癌的发展。然而,通过去甲基化或过表达NID2,可以降低肺癌细胞的活力、增殖、迁移和侵袭能力,并提高凋亡率[2]。在血管平滑肌细胞中,NID2通过连接Jagged1-Notch3信号通路维持血管平滑肌细胞的收缩表型,并防止新内膜形成[3]。此外,NID2基因的单核苷酸多态性(SNPs)与中国人胶质瘤的风险和预后相关,rs11846847和rs1874569与胶质瘤风险增加相关,而rs1874569与胶质瘤患者的预后较差相关[4]。NID2在黑色素瘤中也是一个关键因素,它参与纤维母细胞活化,形成屏障限制CD8+ T细胞接近肿瘤细胞,导致患者对免疫疗法的反应不佳[5]。在胃癌中,NID2的表达水平与TNM分期呈正相关,且NID2的过表达能够促进胃癌细胞的侵袭和迁移[6]。此外,尿液中TWIST1和NID2基因甲基化可以作为膀胱癌的诊断测试,但测试结果仍然较差,可能不足以替代膀胱镜检查[7]。在口腔鳞状细胞癌(OSCC)中,NID2和HOXA9的启动子高甲基化可以作为预防和早期检测的生物标志物[8]。最后,骨基质的矿化状态通过影响基因表达,进而影响骨形成和骨吸收过程,其中NID2可能作为临时迁移引导因子发挥作用[9]。
综上所述,NID2在多种癌症的发生和发展中发挥着重要作用,其表达和功能与肿瘤的转移、侵袭和预后密切相关。NID2还可以作为血管平滑肌细胞收缩表型的关键调节因子,并参与骨形成和骨吸收过程。此外,NID2基因的SNPs与某些癌症的风险和预后相关。因此,深入研究NID2的生物学功能和作用机制,有助于揭示肿瘤的发生和发展机制,并为癌症的诊断、治疗和预后提供新的思路和策略。
参考文献:
1. Chai, Annie Wai Yeeng, Cheung, Arthur Kwok Leung, Dai, Wei, Law, Simon, Lung, Maria Li. . Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma. In Oncotarget, 7, 78859-78871. doi:10.18632/oncotarget.12889. https://pubmed.ncbi.nlm.nih.gov/27793011/
2. Wang, Jianfeng, Zhao, Yan, Xu, Hongyan, Zou, Qingxu, Lin, Fengwu. 2019. Silencing NID2 by DNA Hypermethylation Promotes Lung Cancer. In Pathology oncology research : POR, 26, 801-811. doi:10.1007/s12253-019-00609-0. https://pubmed.ncbi.nlm.nih.gov/30826972/
3. Mao, Chenfeng, Ma, Zihan, Jia, Yiting, Fu, Yi, Kong, Wei. 2021. Nidogen-2 Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells and Prevents Neointima Formation via Bridging Jagged1-Notch3 Signaling. In Circulation, 144, 1244-1261. doi:10.1161/CIRCULATIONAHA.120.053361. https://pubmed.ncbi.nlm.nih.gov/34315224/
4. Hao, Jie, Huang, Congmei, Zhao, Weiwei, Jin, Tianbo, Hu, Mingjun. 2024. Association of NID2 SNPs with Glioma Risk and Prognosis in the Chinese Population. In Neuromolecular medicine, 26, 27. doi:10.1007/s12017-024-08795-0. https://pubmed.ncbi.nlm.nih.gov/38935278/
5. Sha, Yan, Mao, An-Qi, Liu, Yuan-Jie, Wu, Mu-Yao, Shen, Hui. 2023. Nidogen-2 (NID2) is a Key Factor in Collagen Causing Poor Response to Immunotherapy in Melanoma. In Pharmacogenomics and personalized medicine, 16, 153-172. doi:10.2147/PGPM.S399886. https://pubmed.ncbi.nlm.nih.gov/36908806/
6. Yu, Zhi-Hao, Wang, Yue-Mei, Jiang, Yu-Zhang, Wan, Yi-Yuan, Wang, Xiao-Wei. 2019. NID2 can serve as a potential prognosis prediction biomarker and promotes the invasion and migration of gastric cancer. In Pathology, research and practice, 215, 152553. doi:10.1016/j.prp.2019.152553. https://pubmed.ncbi.nlm.nih.gov/31362888/
7. Fantony, Joseph J, Abern, Michael R, Gopalakrishna, Ajay, Lance, Raymond S, Inman, Brant A. 2015. Multi-institutional external validation of urinary TWIST1 and NID2 methylation as a diagnostic test for bladder cancer. In Urologic oncology, 33, 387.e1-6. doi:10.1016/j.urolonc.2015.04.014. https://pubmed.ncbi.nlm.nih.gov/26027762/
8. Guerrero-Preston, R, Soudry, E, Acero, J, Califano, J, Sidransky, D. 2011. NID2 and HOXA9 promoter hypermethylation as biomarkers for prevention and early detection in oral cavity squamous cell carcinoma tissues and saliva. In Cancer prevention research (Philadelphia, Pa.), 4, 1061-72. doi:10.1158/1940-6207.CAPR-11-0006. https://pubmed.ncbi.nlm.nih.gov/21558411/
9. Wischmann, Johannes, Lenze, Florian, Thiel, Antonia, Pleshko, Nancy, Mayer-Kuckuk, Philipp. 2018. Matrix mineralization controls gene expression in osteoblastic cells. In Experimental cell research, 372, 25-34. doi:10.1016/j.yexcr.2018.09.005. https://pubmed.ncbi.nlm.nih.gov/30193837/