基因Cxcl9,也称为C-X-C趋化因子配体9,是CXC趋化因子家族中的一员。CXC趋化因子是一类低分子量的细胞因子,主要功能是招募白细胞到炎症部位,但在肿瘤生长、血管生成和转移中也发挥着关键作用。Cxcl9能够吸引CXCR3+(包括CXCR3-A和CXCR3-B)T淋巴细胞,从而在生理疾病的发生和维持中发挥作用。
Cxcl9在多种疾病中发挥着重要作用。例如,在成人起病的免疫缺陷综合征中,Cxcl9基因的下调可以帮助区分抗干扰素γ自身抗体相关的淋巴结病和淋巴瘤[1]。此外,Cxcl9在宫颈癌中与M1巨噬细胞的浸润水平呈正相关,高Cxcl9水平与良好的预后相关,并且与免疫检查点有关[2]。在类风湿关节炎中,Cxcl9基因多态性与疾病的发生和进展相关[3]。Cxcl9-11基因多态性与慢性丙型肝炎患者肝纤维化的进展相关[4]。此外,Cxcl9在肿瘤进展中具有矛盾的作用,既能够抑制肿瘤生长,也能够促进肿瘤血管生成和转移[5]。在局限性硬皮病中,Cxcl9/10/11基因表达上调,可能与疾病的发生和发展相关[6]。在肺动脉高压中,Cxcl9是潜在的生物标志物之一,可能与疾病的发生和发展相关[7]。在肝纤维化中,Cxcl9是重要的免疫相关基因之一,与免疫细胞浸润和炎症反应相关[8]。
Cxcl9在多种鱼类中也有表达,如鲑鱼和斑马鱼。这些研究结果提示Cxcl9在鱼类免疫系统中发挥着重要作用,可能与T细胞迁移和Th1免疫反应的诱导相关[9]。此外,Cxcl9在骨骼中发挥重要作用,能够抑制血管生成和骨生成,从而影响骨代谢和骨疾病的发生[10]。
综上所述,Cxcl9是一种重要的CXC趋化因子,在多种疾病和生理过程中发挥着重要作用。Cxcl9的研究有助于深入理解趋化因子的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Yuan, Chang-Tsu, Huang, Wan-Ting, Hsu, Chia-Lang, Chen, Yee-Chun, Chang, Shan-Chwen. 2023. CXCL9 as a Reliable Biomarker for Discriminating Anti-IFN-γ-Autoantibody-Associated Lymphadenopathy that Mimics Lymphoma. In Journal of clinical immunology, 44, 35. doi:10.1007/s10875-023-01643-z. https://pubmed.ncbi.nlm.nih.gov/38153613/
2. Liao, Wenxin, Liu, Tingting, Li, Yang, Deng, Juexiao, Shen, Fujin. 2024. The bioinfomatics analysis of the M1 macrophage-related gene CXCL9 signature in cervical cancer. In Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology, 44, 2373951. doi:10.1080/01443615.2024.2373951. https://pubmed.ncbi.nlm.nih.gov/38963237/
3. Kotrych, Daniel, Dziedziejko, Violetta, Safranow, Krzysztof, Drozdzik, Marek, Pawlik, Andrzej. 2015. CXCL9 and CXCL10 gene polymorphisms in patients with rheumatoid arthritis. In Rheumatology international, 35, 1319-23. doi:10.1007/s00296-015-3234-0. https://pubmed.ncbi.nlm.nih.gov/25702175/
4. Magri, Mariana Cavalheiro, Alvarez, Maria Stella Montanha, Iogi, Anny Ayumi, Nunes, Arielle Karen da Silva, Tengan, Fátima Mitiko. . Study of CXCL9-11 gene polymorphisms in liver fibrosis among patients with chronic hepatitis C. In Pathogens and disease, 79, . doi:10.1093/femspd/ftab007. https://pubmed.ncbi.nlm.nih.gov/33476381/
5. Ding, Qiang, Lu, Panpan, Xia, Yujia, Tian, Dean, Liu, Mei. 2016. CXCL9: evidence and contradictions for its role in tumor progression. In Cancer medicine, 5, 3246-3259. doi:10.1002/cam4.934. https://pubmed.ncbi.nlm.nih.gov/27726306/
6. Werner, Giffin, Sanyal, Anwesha, Mirizio, Emily, Jacobe, Heidi, Torok, Kathryn S. 2023. Single-Cell Transcriptome Analysis Identifies Subclusters with Inflammatory Fibroblast Responses in Localized Scleroderma. In International journal of molecular sciences, 24, . doi:10.3390/ijms24129796. https://pubmed.ncbi.nlm.nih.gov/37372943/
7. Dong, Haoru, Li, Xiuchun, Cai, Mengsi, Wang, Liangxing, Huang, Xiaoying. 2021. Integrated bioinformatic analysis reveals the underlying molecular mechanism of and potential drugs for pulmonary arterial hypertension. In Aging, 13, 14234-14257. doi:10.18632/aging.203040. https://pubmed.ncbi.nlm.nih.gov/34016786/
8. Bai, Yan-Ming, Liang, Shuang, Zhou, Bo. 2023. Revealing immune infiltrate characteristics and potential immune-related genes in hepatic fibrosis: based on bioinformatics, transcriptomics and q-PCR experiments. In Frontiers in immunology, 14, 1133543. doi:10.3389/fimmu.2023.1133543. https://pubmed.ncbi.nlm.nih.gov/37122694/
9. Valdés, Natalia, Cortés, Marcos, Barraza, Felipe, Reyes-López, Felipe E, Imarai, Mónica. 2022. CXCL9-11 chemokines and CXCR3 receptor in teleost fish species. In Fish and shellfish immunology reports, 3, 100068. doi:10.1016/j.fsirep.2022.100068. https://pubmed.ncbi.nlm.nih.gov/36569039/
10. Huang, Bin, Wang, Wenhao, Li, Qingchu, Jin, Dadi, Bai, Xiaochun. 2016. Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. In Nature communications, 7, 13885. doi:10.1038/ncomms13885. https://pubmed.ncbi.nlm.nih.gov/27966526/